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Abstract

An improved formulation for free vibration and spatial stability of non-symmetric thin-walled curved beams is

presented based on the displacement field considering variable curvature effects and the second-order terms of finite-

semitangential rotations. By introducing Vlasov�s assumptions and integrating over the non-symmetric cross-section,

the total potential energy is consistently derived from the principle of virtual work for a continuum. In this formulation,

all displacement parameters and the warping function are defined at the centroid axis and also thickness-curvature

effects and Wagner effect are accurately taken into account. For F.E. analysis, a thin-walled curved beam element is

developed using the third-order Hermitian polynomials. In order to illustrate the accuracy and the practical usefulness

of the present method, numerical solutions by this study are presented with the results analyzed by ABAQUS� shell
elements. Particularly, the effect of arch rise to span length ratio is investigated on vibrational and buckling behaviour

of non-symmetric curved beams.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Curved bridges, arches and thin-walled structural members having variable curvatures show very com-

plex structural behaviour since twisting moments are always occurring in addition to bending moments due

to curvature effects. Therefore the accurate prediction of the natural frequencies and the stability limit

corresponding to a given strength for the curved beam elements with variable curvatures is of fundamental

importance in the design of these structures.

Until now, considerable researches on the in-plane free vibration of curved beams with variable cur-

vatures have been performed. Tseng et al. (2000, 1997) and Huang et al. (1998b) studied the in-plane free
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vibration of arches with variable curvatures using the dynamic stiffness method based on Timoshenko beam

theory. Oh et al. (2000, 1999) derived the governing equations of the in-plane free vibrations of non-circular

arches. Tarnopolskaya et al. (1996) has reported the phenomenon of transformation of mode shapes with

change in curvatures using the asymptotic analysis. And Gutierrez et al. (1989), Wang and Moore (1973),
Wang (1972), Romanelli and Laura (1972) calculated the natural frequencies of non-circular arches. On the

other hand, Huang et al. (2000, 1998a) investigated the out-of-plane free vibration behaviour and the linear

dynamic response of non-circular curved beams using the Laplace transform and dynamic stiffness method.

However most of these researches are confined to in-plane or out-of-plane vibration of non-circular curved

beams with only symmetric cross-sections.

In case of spatial stability analysis of thin-walled circular curved beams, Timoshenko and Gere (1961)

derived the governing equations for buckling of curved beams neglecting the effect of warping. Vlasov

(1961) formulated the stability equations by substituting the curvature terms of the curved beam into the
straight beam equilibrium equation. Usuki et al. (1979) developed a lateral–torsional buckling theory and

finite element formulation of thin-walled circular arch accounting for prebuckling deflections. Also,

Papangelis and Trahair (1987a,b) obtained analytical solutions for the lateral buckling of arch and com-

pared them with experiment results. Yang and Kuo (1987) and Kuo and Yang (1991) presented a stability

theory of symmetric thin-walled curved beam considering curvature effects and also, developed a straight

beam element for buckling analysis of curved beams. Saleeb et al. (1992) developed a finite element model

for the buckling analysis of shear flexible thin-walled frames using a mixed formulation. Kang and Yoo

(1994a,b) derived analytical solutions for the stability behavior of simply supported thin-walled curved
beams having a doubly symmetric open section. Chang et al. (1996) presented numerical solutions on

spatial stability of the circular arch using the thin-walled straight beam element. Recently Kim et al.

(2000a,b) developed a general theory for spatial stability analysis of non-symmetric thin-walled circular

curved beams. However, though a great portion of the previous research has been conducted on the sta-

bility analysis of circular curved beams, to the authors� knowledge, the stability analysis of the curved beam

with variable curvatures has rarely been studied.

In this paper, for spatially coupled free vibration and buckling of non-symmetric thin-walled curved

beams with variable curvatures, an improved energy formulation is consistently presented based on the
study of Kim et al. (2000a). Here the total potential energy of the non-circular curved beam is derived by

introducing the displacement field considering both Vlasov�s assumption and effects of variable curvatures

and degenerating total potential energies for the elastic continuum to those for the curved beam. And then a

thin-walled non-circular beam element for F.E. analysis is developed using the third-order Hermitian

polynomials. Finally in order to illustrate the accuracy and the validity of this element, numerical solutions

by this study are presented and compared with the results analyzed by ABAQUS� shell element (1992). In

particular, the influences of the arch rise to span length ratio are investigated on spatial vibrational and

buckling behaviors of non-circular beams with the parabolic and elliptic shapes.

2. Principle of linearized virtual work

The global coordinate system ðx1; x2; x3Þ of the thin-walled non-circular beam is shown in Fig. 1. The x1-
axis coincides with the centroidal axis which is curves in plane but x2; x3 are not necessarily principal inertia

axes. This curvilinear coordinate is orthogonal if the cross-section is prismatic. Additional assumptions

adopted in this study are

1. The thin-walled non-circular beam is linearly elastic and prismatic.

2. The cross-section is rigid with respect to in-plane deformation except for warping deformation.

3. The effects of shear deformations are negligible.
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For free vibration and buckling analysis of the general continuum, the principle of linearized virtual

work is expressed as follows:Z
V
ðsijdeij þ 0sijdgij þ 0sijde�ijÞdV � x2

Z
V

qUidUi dV ¼
Z
S
TidUi dS ð1Þ

where 0sij, sij and eij are the initial, the incremental stress and the linear strain, respectively; gij and e
�
ij are

the non-linear strain due to Ui and the linear strain due to U �
i , respectively; q is the density; x is the circular

frequency; Ti is the surface force; Ui and U �
i are linear and non-linear displacement components, respec-

tively; d denotes �virtual�.

2.1. The displacement field for non-symmetric thin-walled cross-sections

Fig. 2 shows displacement parameters defined at the centroid along the x1-axis of the non-symmetric thin-

walled non-circular beam. e2, e3 are the position vector components of the shear center in the local

coordinate. Ux, Uy , Uz and x1, x2, x3 are rigid body translations and rotations of the cross-section about

x1-, x2- and x3-axis, respectively. f is a warping parameter denoting the gradient of the twisting angle

hð¼ x1Þ with respect to x1-axis.

Fig. 2. Notation for displacement parameters.

Fig. 1. Curvilinear coordinate system of a non-symmetric thin-walled curved beam.
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From Frenet�s formula (Love, 1934), rotational parameters x2, x3, f and an axial parameter g with

respect to rigid body translations and twisting angle can be obtained by

x2 ¼ �U 0
z þ jUx

x3 ¼ U 0
y

f ¼ �h0 � jU 0
y

g ¼ U 0
x þ jUz

ð2a–dÞ

where differentiation with respect to x1 is denoted by a prime and jðx1Þ denotes the curvature of non-

circular beams along the x1-axis.
With the assumption that the cross-section is rigid with respect to cross-sectional in-plane deformation,

the total displacement field including both the first and the second-order terms of rotational parameters can

be expressed as follows (Kim et al., 2000a):

U ¼ U0 þ S

�
þ 1

2
S2

�
X0 ð3Þ

where

U ¼ ðU1 þ U �
1 ;U2 þ U �

2 ;U3 þ U �
3 Þ

T ð4aÞ

U0 ¼ ðUx þ f/;Uy ;UzÞT ð4bÞ

X0 ¼ ð0; x2; x3ÞT ð4cÞ
and

S ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

24 35 ð5Þ

where rotational components x1, x2, x3 should be interpreted to be semitangential rotations (Argyris and

Symeonidis, 1981; Kim and Kim, 2000).

Substituting Eqs. (2), (4), and (5) into Eq. (3) and arranging in the component form, the displacement

vector components of an arbitrary point on the thin-walled cross-section can be expressed as follows:

U1 ¼ Ux � x2U 0
y � x3ðU 0

z � jUxÞ � ðh0 þ jU 0
yÞ/ðx2; x3Þ

U2 ¼ Uy � x3h
U3 ¼ Uz þ x2h

ð6a–cÞ

and

U �
1 ¼ 1

2
½�hðU 0

z � jUxÞx2 þ hU 0
yx3	

U �
2 ¼ 1

2
½�ðh2 þ U 02

y Þx2 � ðU 0
z � jUxÞU 0

yx3	
U �

3 ¼ 1
2
½�ðU 0

z � jUxÞU 0
yx2 � fh2 þ ðU 0

z � jUxÞ2gx3	
ð7a–cÞ

where Ui, U �
i are displacement components corresponding to the first- and second-order terms of dis-

placement parameters, respectively, while / denotes the normalized warping function defined at the

centroid. The kinematic relationship between / and /s defined at the shear center is given by

/ ¼ /s þ e2x3 � e3x2 ð8Þ
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Section properties used in this study are defined as follows:

I2 ¼
Z
A
x23 dA; I3 ¼

Z
A
x22 dA; I23 ¼

Z
A
x2x3 dA;

I/ ¼
Z
A

/2 dA; I/2 ¼
Z
A

/x3 dA; I/3 ¼
Z
A

/x2 dA;

I222 ¼
Z
A
x33 dA; I223 ¼

Z
A
x2x23 dA; I233 ¼

Z
A
x22x3 dA;

I333 ¼
Z
A
x32 dA; I/22 ¼

Z
A

/x23 dA; I/33 ¼
Z
A

/x22 dA;

I/23 ¼
Z
A

/x3x2 dA; I//2 ¼
Z
A

/2x3 dA; I//3 ¼
Z
A

/2x2 dA

ð9Þ

where A, I2, I3, I23 and I/ are the cross-sectional area, the second moment of inertia about x2- and x3-axes,
product moment of inertia and the warping moment of inertia, respectively. I2/ð¼ I2e2Þ and I3/ð¼ �I3e3Þ
are product moments of inertia due to the normalized warping. Iijkði; j; k ¼ /; 2; 3Þ are the third moments of

inertia. The transformation equations between section properties defined at the centroid–centroid axis and
those at the centroid-shear center axis may be referred to Kim and Kim (2000).

On the other hand, stress resultants are defined as

F1 ¼
Z
A

s11 dA; F2 ¼
Z
A

s12 dA; F3 ¼
Z
A

s13 dA

M1 ¼
Z
A
ðs13x2 � s12x3ÞdA; M2 ¼

Z
A

s11x3 dA; M3 ¼ �
Z
A

s11x2 dA

M/ ¼
Z
A

s11/dA; Mp ¼
Z
A

s11ðx22 þ x23ÞdA

ð10a–hÞ

where F1, F2 and F3 are an axial force and shear forces, respectively; M2 and M3 are bending moments with

respect to x2- and x3-axes, respectively; M1 and M/ are the total twisting moment and the bimoment with

respect to the x1-axis, respectively; Mp is a stress resultant known as the Wagner effect.

2.2. Strain–displacement and force–deformation relations

According to the assumption of rigid deformation with respect to the in-plane, the in-plane strains

ðe22; e33; e23Þ are negligible. For the thin-walled curved beam, a complete set of linear strain–displacement

relations due to the first-order displacement parameters are expressed as follows:

e11 ¼ ðU1;1 þ jU3Þ
1

1þ jx3

� �
¼ ½U 0

x þ jUz � x2ðU 00
y � jhÞ � x3ðU 00

z � jU 0
xÞ � /ðh00 þ jU 00

y Þ	
1

1þ jx3
ð11aÞ

2e12 ¼ U2;1

1

1þ jx3

� �
þ U1;2 ¼ �x3ðh0 þ jU 0

yÞ
1

1þ jx3
� ðh0 þ jU 0

yÞ/;2 ð11bÞ

2e13 ¼ ðU3;1 � jU1Þ
1

1þ jx3

� �
þ U1;3 ¼ ðx2 þ j/Þðh0 þ jU 0

yÞ
1

1þ jx3
� ðh0 þ jU 0

yÞ/;3 ð11cÞ
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where the subscript �comma� indicates partial differentiation with respect to the curvilinear coordinate

ðx1; x2; x3Þ. It should be noticed that Eqs. (11b) and (11c) represent only shear strains due to Saint-Venant

torsion because h0 þ jU 0
y means the derivative of a twisting angle considering the curvature effect. Con-

sequently, it means that shear deformations due to shear forces and the restrained torsion vanish.
Substituting Eq. (11a) into Eqs. (10a), (e)–(g) and integrating over the cross-section yield the following

force–deformation relations.

F1
M2

M3

M/

0BBB@
1CCCA ¼ E

bAA �jbI2I2 jcI23I23 �jcI/2I/2
�jbI2I2 bI2I2 �cI23I23 cI/2I/2
jcI23I23 �cI23I23 bI3I3 �cI/3I/3
�jcI/2I/2 cI/2I/2 �cI/3I/3 bI/I/

26664
37775

U 0
x þ jUz

ð�U 0
z þ jUxÞ0

U 00
y � jh

�ðh0 þ jUyÞ0

0BBB@
1CCCA ð12Þ

where bAA ¼ Aþ j2 bI2I2 . An approximation is used to account for the thickness-curvature effect as follows:

1

1þ jx3
’ 1� jx3 þ j2x23 ð13Þ

On the other hand, non-linear strain–displacement relations due to first-order displacement parameters

and linear relations due to the second-order rotation parameters are expressed in Eqs. (14) and (15), res-

pectively.

g11 ¼
1

2
½ðU1;1 þ jU3Þ2 þ U 2

2;1 þ ðU3;1 � jU1Þ2	
1

1þ jx3

� �2

ð14aÞ

g12 ¼
1

2
½U1;2ðU1;1 þ jU3Þ þ U2;2 
 U2;1 þ U3;2ðU3;1 � jU1Þ	

1

1þ jx3
ð14bÞ

g13 ¼
1

2
½U1;3ðU1;1 þ jU3Þ þ U2;3 
 U2;1 þ U3;3ðU3;1 � jU1Þ	

1

1þ jx3
ð14cÞ

and

e�11 ¼ ðU �
1;1 þ jU �

3 Þ
1

1þ jx3
ð15aÞ

2e�12 ¼ U �
2;1

1

1þ jx3
þ U �

1;2 ð15bÞ

2e�13 ¼ ðU �
3;1 � jU �

1 Þ
1

1þ jx3
þ U �

1;3 ð15cÞ

2.3. Total potential energy of thin-walled curved beams with variable curvatures

Total potential energy P of thin-walled curved beams with variable curvatures consists of the elastic

strain energy PE, the potential energy PGð¼ PG1 þ PG2Þ due to initial stresses and the kinetic energy T as

follows:

P ¼ PE þ PG1 þ PG2 � T ð16aÞ
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where

PE ¼
1

2

Z l

0

Z
A
½s11e11 þ 2s12e12 þ 2s13e13	ð1þ jx3ÞdAdx1 ð16bÞ

PG1 ¼
Z l

0

Z
A
½0s11g11 þ 20s12g12 þ 20s13g13	ð1þ jx3ÞdAdx1 ð16cÞ

PG2 ¼
Z l

0

Z
A
½0s11e�11 þ 20s12e�12 þ 20s13e�13	ð1þ jx3ÞdAdx1 ð16dÞ

T ¼ 1

2
qx2

Z l

0

Z
A
½U 2

1 þ U 2
2 þ U 2

3 	ð1þ jx3ÞdAdx1 ð16eÞ

where l, E and G are the length of curved beams, Young�s modulus and shear modulus, respectively.

Substituting Eq. (11) into Eq. (16b) and integrating over the cross-sectional area yields:

PE ¼
1

2

Z L

0

½F1ðU 0
x þ jUzÞ þM2ð�U 0

z þ jUxÞ0 þM3ðU 00
y � jhÞ �M/ðh0 þ jU 0

yÞ
0

þ ðM1 �MRÞðh0 þ jU 0
yÞ	dx1 ð17aÞ

where

MR ¼
Z
A
fðs12/;2 þ s13/;3Þð1þ jx3Þ � s13j/gdA: ð17bÞ

Now substituting the force–deformation relations (12) into the elastic strain energy (17a) leads to

PE ¼ 1

2

Z L

0

EðA
h

þ j2 bI2I2ÞðU 0
x þ jUzÞ2 þ EbI3I3ðU 00

y � jhÞ2 þ EbI2I2fU 00
z � ðjUxÞ0g2

þ 2EbI2I2jðU 0
x þ jUzÞfU 00

z � ðjUxÞ0g þ 2EcI/3I/3ðU 00
y � jhÞðh00 þ j0U 0

y þ jU 00
y Þ þ E bI/I/ðh00 þ j0U 0

y þ jU 00
y Þ

2

þ GJðh0 þ jU 0
yÞ

2 þ 2EcI23I23ðU 00
y � jhÞfU 00

z � ðjUxÞ0g þ 2EcI23I23jðU 00
y � jhÞðU 0

x þ jUzÞ

þ 2EcI/2I/2ðh00 þ j0U 0
y þ jU 00

y ÞfU 00
z � ðjUxÞ0g þ 2EcI/2I/2ðh00 þ j0U 0

y þ jU 00
y ÞðU 0

x þ jUzÞ
i
dx1 ð18Þ

Then simplifying the underlined terms in Eq. (18), PE may be obtained as follows:

PE ¼
1

2

Z L

0

EAðU 0
x

h
þ jUzÞ2 þ EbI3I3ðU 00

y � jhÞ2 þ EbI2I2ðU 00
z þ j2Uz � j0UxÞ2 þ E bI/I/ðh00 þ j0U 0

y þ jU 00
y Þ

2

þ 2EcI/3I/3ðU 00
y � jhÞðh00 þ j0U 0

y þ jU 00
y Þ þ GJðh

0 þ jU 0
yÞ

2 þ 2EcI23I23ðU 00
y � jhÞðU 00

z þ j2Uz � j0UxÞ

þ 2EcI/2I/2ðh00 þ j0U 0
y þ jU 00

y ÞðU 00
z þ j2Uz � j0UxÞ

i
dx1 ð19aÞ

wherebI2I2 ¼ I2 � jI222; bI3I3 ¼ I3 � jI233; cI23I23 ¼ I23 � jI223bI/I/ ¼ I/ � jI//2; cI/2I/2 ¼ I/2 � jI/22; cI/3I/3 ¼ I/3 � jI/23
ð19bÞ

and J is the torsional constant, and the following relation is used:

M1 �MR ¼ M1 �M 0
/ ¼ GJðh0 þ jU 0

yÞ ð20Þ
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Next, substituting the strain–displacement relations into Eqs. (16c) and (16d), noting the definition of

Eq. (10), and considering the thickness-curvature effect of Eq. (13), PG1 and PG2 are expressed, respectively,

as follows:

PG1 ¼
1

2

Z L

0

0F1fU 02
y

"
þ ðU 0

z � jUxÞ2g þ 0M2f � 2U 0
yh

0 � jU 02
y þ jðU 0

z � jUxÞ2g

� 20M3ðU 0
z � jUxÞðh0 þ jU 0

yÞ þ 20F2hðU 0
z � jUxÞ � 20F3U 0

yh

þ 2

Z
A

0s12x3 dAfU 0
yðU 0

z � jUxÞ0 þ jhðU 0
z � jUxÞg þ 2

Z
A

0s13x2 dAðU 0
z � jUxÞðU 00

y � jhÞ

þ2

Z
A

0s12x2 dAfU 0
yðU 00

y � jhÞ þ hðh0 þ jU 0
yÞgþ2

Z
A

0s13x3 dAfðU 0
z � jUxÞðU 0

z � jUxÞ0 þ hh0g

þ 0Mpðh0 þ jU 0
yÞ

2 þ 2j0M/ðU 0
z � jUxÞðh0 þ jU 0

yÞ
#
dx1 ð21Þ

and

PG2 ¼
1

2

Z L

0

0M3ffhðU 0
z

"
� jUxÞg0 þ jU 0

yðU 0
z � jUxÞg þ 0M2fðhU 0

yÞ
0 � jh2 � jðU 0

z � jUxÞ2g

� 0F2hðU 0
z � jUxÞ þ 0F3ðhU 0

yÞ�
Z
A

0s12x2 dAðh2 þ U 02
y Þ

0 �
Z
A

0s12x3 dAffU 0
yðU 0

z � jUxÞg0

þ jhðU 0
z � jUxÞg �

Z
A

0s13x2 dAffU 0
yðU 0

z � jUxÞg0 þ jhðU 0
z � jUxÞg

�
Z
A

0s13x3 dAfh2 þ ðU 0
z � jUxÞ2g0

#
dx1 ð22Þ

where it should be noted that underlined terms existing in Eqs. (21) and (22) cancel out naturally and energy

terms due to the total torque M1 are obtained without introduction of awkward assumptions (see Eq. (25)).

Also, the inextensibility condition (23) is utilized.

U 0
x þ jUz ’ 0 ð23Þ

Consequently, summing up Eqs. (21) and (22), the final expression for the potential energy functional PG

is represented as follows:

PG ¼ 1

2

Z L

0

½0F1fU 02
y þ ðU 0

z � jUxÞ2g þ 0Mpðh0 þ jU 0
yÞ

2 � 0F3ðU 0
yhÞ þ 0M2fðU 00

y � jhÞh � U 0
yðh

0 þ jU 0
yÞg

þ 2j0M/ðU 0
z � jUxÞðh0 þ jU 0

yÞ þ 0M3fðU 0
z � jUxÞ0h � ðU 0

z � jUxÞðh0 þ jU 0
yÞg þ 0F2hðU 0

z � jUxÞ
þ 0M1fðU 0

z � jUxÞðU 00
y � jhÞ � U 0

yðU 0
z � jUxÞ0g	dx1 ð24Þ

Here to investigate effects of the second-order terms of finite semitangential rotations, we assume that the

underlined terms may be neglected in Eq. (21) and Eq. (25) is valid for the torsional moment (see Argyris

et al., 1979; Kim et al., 2001).

0:50M1 ¼
Z
A

0s13x2 dA ¼ �
Z
A

0s12x3 dA ð25Þ

Then the potential energy PG1 including only the first-order term of finite rotations may be written as
follows:
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PG1 ¼
1

2

Z L

0

½0F1fU 02
y þ ðU 0

z � jUxÞ2g þ 0M2ð�2U 0
yh

0 � jU 02
y Þ � 20M3ðU 0

z � jUxÞðh0 þ jU 0
yÞ

þ 20F2hðU 0
z � jUxÞ � 20F3U 0

yh þ 0Mpðh0 þ jU 0
yÞ

2 þ 0M1fðU 0
z � jUxÞðU 00

y � 2jhÞ
� U 0

yðU 0
z � jUxÞ0g þ 2j0M/ðU 0

z � jUxÞðh0 þ jU 0
yÞ	dx1 ð26Þ

For the spatial stability analysis of non-symmetric curved beams subjected to general loadings, the stress

resultant Mp denoting Wagner effect should be expressed with respect to stress resultants F1, M2, M3, M/ as

follows:

Mp ¼ b1F1 þ b2M2 þ b3M3 þ b/M/ ð27Þ

Now to evaluate coefficients b1; b2; b3; b/, substituting Eq. (11a) into Eq. (10h) and integrating over the

cross-section leads to

Mp ¼ EhbI2I2 þ bI3I3 ; I222 þ I233;�I223 � I333; I/22 þ I/33i
U 0
x þ jUz

ð�U 0
z þ jUxÞ0

U 00
y � jh

�ðh0 þ jUyÞ0

0BBB@
1CCCA ð28Þ

Then substituting force–deformation relations (12) into Eq. (27) and comparing the result with Eq. (28),

four coefficients are determined as follows:bAA �jbI2I2 jcI23I23 �jcI/2I/2
�jbI2I2 bI2I2 �cI23I23 cI/2I/2
jcI23I23 �cI23I23 bI3I3 �cI/3I/3
�jcI/2I/2 cI/2I/2 �cI/3I/3 bI/I/

26664
37775

b1

b2

b3

b/

0BB@
1CCA ¼

bI2I2 þ bI3I3
I233 þ I222
�I333 � I223
I33/ þ I22/

0BB@
1CCA ð29Þ

Finally in order to obtain the kinetic energy T relevant to the non-symmetric cross-section, substituting the

displacement components Eq. (6) into Eq. (16e) and integrating it over the cross-section yields

T ¼ 1

2
qx2

Z L

0

AðU 2
x

h
þ U 2

y þ U 2
z Þ þ eI0I0h2 þ eI3I3U 02

y þ eI2I2ðU 0
z � jUxÞ2 þ eI/I/ðh0 þ jU 0

yÞ
2 þ 2fI/3I/3U 0

yðh
0 þ jU 0

yÞ

þ 2fI/2I/2ðU 0
z � jUxÞðh0 þ jU 0

yÞ � 2jI/2Uxðh0 þ jU 0
yÞ � 2jI2ðUyhÞ � 2jI2UxðU 0

z � jUxÞ

þ 2jI223U 0
yðU 0

z � jUxÞ þ 2I23ðU 0
yU

0
z � 2jUxU 0

y þ jUzhÞ
i
dx1 ð30aÞ

whereeI2I2 ¼ I2 þ jI222; eI3I3 ¼ I3 þ jI233; eI/I/ ¼ I/ þ jI//2; fI/2I/2 ¼ I/2 þ jI/22fI/3I/3 ¼ I/3 þ jI/23; I0 ¼ I2 þ I3; eI0I0 ¼ I0 þ jðI222 þ I233Þ
ð30bÞ

3. The thin-walled non-circular beam element

For F.E. analysis of non-circular beams, a thin-walled curved beam element with the non-symmetric

cross-section is developed in this section. Fig. 3 shows the nodal displacement vector of a thin-walled
curved beam element including restrained warping effects. In order to accurately express the deformation of

element, it is necessary to use pertinent shape functions.
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In this study, cubic Hermitian polynomials are adopted to interpolate displacement parameters that are

defined at the centroid axis. Thus this curved element has two nodes and eight nodal degrees of freedom per

node. As a result, the element displacement parameters Ux;Uy ;Uz; h can be interpolated with respect to the

nodal displacements as follows:

Ux ¼ h1 
 up þ h2 
 gp þ h3 
 uq þ h4 
 gq ð31aÞ

Uy ¼ h1 
 vp þ h2 
 xp
3 þ h3 
 vq þ h4 
 x

q
3 ð31bÞ

Uz ¼ h1 
 wp � h2 
 xp
2 þ h3 
 wq � h4 
 x

q
2 ð31cÞ

h ¼ h1 
 xp
1 � h2 
 f p þ h3 
 x

q
1 � h4 
 f q ð31dÞ

where

up ¼ Uxð0Þ; vp ¼ Uyð0Þ; wp ¼ Uzð0Þ ð32a–cÞ

xp
1 ¼ hð0Þ; xp

2 ¼ �U 0
zð0Þ; xp

3 ¼ U 0
yð0Þ ð32d–fÞ

f p ¼ �h0ð0Þ; gp ¼ U 0
xð0Þ ð32g; hÞ

and hi denotes cubic Hermitian polynomials.

Substituting the shape functions, material and cross-sectional properties and distribution of internal
forces into Eqs. (19), (24) and (30) and integrating along the element length, the equilibrium equation of

thin-walled curved beam element are obtained in matrix form as following:

ðKe þ KgÞUe � x2MeUe ¼ Fe ð33Þ

and

Ue ¼ hup; vp;wp;xp
1;x

p
2;x

p
3; f

p; gp; uq; vq;wq;xq
1;x

q
2;x

q
3; f

q; gqi ð34aÞ

Fe ¼ hF p1 ; F
p
2 ; F

p
3 ;M

p
1 ;M

p
2 ;M

p
3 ;M

p
/; F

p
m; F

q
1 ; F

q
2 ; F

q
3 ;M

q
1 ;M

q
2 ;M

q
3 ;M

q
/; F

q
mi ð34bÞ

where Ke, Kg and Me denote 16� 16 element elastic and geometric stiffness and mass matrices, respectively,

which are evaluated using Gauss five-point numerical integration scheme. Ue and Fe are nodal displacement

and force vectors, respectively. Here it is convenient to introduce rotational and axial nodal displacement

components considering curvature effect as follows:cxp
2xp
2 ¼ �U 0

zð0Þ þ jUxð0Þ ¼ xp
2 þ jup ð35aÞ

Fig. 3. Nodal displacement vector of a thin-walled curved beam element.
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cf pf p ¼ �h0ð0Þ � jU 0
yð0Þ ¼ f p � jxp

3 ð35bÞ

bgpgp ¼ U 0
xð0Þ þ jUzð0Þ ¼ gp þ jwp ð35cÞ

In order to evaluate the element matrices corresponding to the newly defined nodal displacement com-

ponents, the transformation equation between the nodal displacement vector Ue and the new displacement

vector cUeUe considering the effect of curvature may be obtained from Eq. (35) as follows:

Ua ¼ T1cUaUa ; a ¼ p; q ð36Þ
where

UT
a ¼ f ua va wa xa

1 xa
2 xa

3 f a ga g; cUaUa
T ¼ fua va wa xa

1
cxa

2xa
2 xa

3
cf af a bgaga g

ð37a; bÞ
and

ð38Þ

Now using Eq. (38), Eq. (33) is transformed to

ðcKeKe þ cKgKgÞcUeUe � x2cMeMe
cUeUe ¼ bFeFe ð39Þ

wherecUeUe ¼ up; vp;wp;xp
1;
cxp

2xp
2 ;x

p
3;
cf pf p ; bgpgp ; uq; vq;wq;xq

1;
cxq

2xq
2 ;x

q
3;
cf qf q ; bgqgqD E

ð40aÞ

bFeFe ¼ F p1 ; F
p
2 ; F

p
3 ;M

p
1 ;

cMp
2M
p
2 ;M

p
3 ;

cMp
/M
p
/ ;

cF pmF pm ; F q1 ; F q2 ; F q3 ;Mq
1 ;

cMq
2M
q
2 ;M

q
3 ;

cMq
/M
q
/ ;

cF qmF qmD E
ð40bÞ

and matrices and vectors in Eq. (39) are evaluated as follows:cKeKe ¼ T TKeT ; Ue ¼ TcUeUe ; bFeFe ¼ T TFe ð41aÞ
where

ð41bÞ

Lastly using direct stiffness method, the matrix equilibrium equation for the free vibration and elastic

spatial buckling analysis of non-symmetric thin-walled curved beam with variable curvature is obtained as

½KE þ kKG	U � x2MU ¼ F ð42Þ
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where M , KE and KG are global mass, global elastic and geometric stiffness matrices, respectively; F denotes

the global nodal force vector and becomes zero vector for free vibration and stability analysis and k denotes

the load parameter under the assumption of proportional loading; and KG is calculated for a predefined

initial stress distribution corresponding to the prebuckling loading state.

4. Numerical examples

The total potential energy has been derived and F.E. procedures have been developed for spatial free

vibration and stability analysis of non-symmetric thin-walled curved beams with variable curvatures. In this

section, spatial free vibration and stability analysis for curved beams of the parabolic and elliptic geo-

metries with clamped–clamped and clamped–free end constraints are performed according to the variation

of arch rise to span length ratio.

4.1. Convergence study

Figs. 4 and 5 show the geometric configuration of parabolic and elliptic arches having the same span

length l and rise h and their channel cross-sections monosymmetric with respect to x2- and x3-axis, res-
pectively. To examine the convergence property of the thin-walled curved beams with variable curvatures

developed by this study, spatial free vibration and stability analysis for curved beams of the parabolic with

clamped–free end constraints are performed. The cross-section of curved beam is monosymmetric with

respect to x3-axis and the arch rise to span length ratio (h=l) is 0.4.
The in-plane and out-of-plane natural frequencies and the lateral buckling load normalized with respect

to the F.E. solution using 30 curved beam elements are presented in Figs. 6 and 7 as the element number
increases. From Fig. 6, it can be found that the convergence speed of natural frequencies for out-of-plane

modes is higher than that for in-plane modes. Also, Figs. 6 and 7 show that the convergence speed is fast

Fig. 4. Shapes and boundary conditions of arches for vibration analysis.
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and results by 20 curved beam elements give accurate solutions. Accordingly, in subsequent examples on

the free vibration and buckling problems of non-circular curved beam, an entire beam is modeled using 20

curved beam elements.

4.2. Free vibration of thin-walled curved beams

The clamped–clamped and clamped–free end constraints are considered (see Fig. 4). The influence of
rise to span length ratio of arch is investigated for two types of arches. In this example, 20 curved beam

Fig. 5. Monosymmetric cross-sections.
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elements and 320 and 400 shell elements are used for analysis of arches monosymmetric with respect to x2-
and x3-axis, respectively.

Tables 1 and 2 show natural frequencies of parabolic and elliptic arches monosymmetric with respect to

x2-axis that have spatially coupled mode shapes. On the other hand, mode shapes of arches monosymmetric

Fig. 6. Convergence of normalized frequencies.

Fig. 7. Convergence of normalized buckling load.
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with respect to x3-axis are decoupled so that Tables 3 and 4 separately show frequencies corresponding

to the in-plane and out-of-plane vibration modes. Also in Tables 1–4, F.E. solutions by present study

are compared with those by ABAQUS�s shell elements for the clamped–clamped and clamped–free end

Table 1

Natural frequencies for clamped–clamped arch with monosymmetric section x2-axis (rad/s)

Shape Parabolic Elliptic

h=l Mode Present study ABAQUS Present study ABAQUS

0.2 1 0.310 0.312 0.310 0.312

2 0.883 0.886 0.879 0.883

3 1.828 1.834 1.817 1.823

4 2.275 2.254 2.262 2.241

5 3.121 3.130 3.102 3.110

6 4.111 4.060 4.039 3.986

0.3 1 0.237 0.239 0.236 0.238

2 0.668 0.669 0.663 0.664

3 1.419 1.421 1.406 1.408

4 1.792 1.781 1.774 1.761

5 2.469 2.473 2.449 2.452

6 3.572 3.532 3.538 3.496

0.4 1 0.183 0.184 0.182 0.183

2 0.509 0.509 0.503 0.503

3 1.098 1.099 1.085 1.086

4 1.378 1.379 1.359 1.359

5 1.930 1.933 1.913 1.915

6 2.896 2.878 2.886 2.868

Table 2

Natural frequencies for clamped–free arch with monosymmetric section x2-axis (rad/s)

Shape Parabolic Elliptic

h=l Mode Present study ABAQUS Present study ABAQUS

0.2 1 0.035 0.034 0.035 0.034

2 0.156 0.156 0.155 0.155

3 0.203 0.203 0.203 0.202

4 0.727 0.723 0.718 0.715

5 0.768 0.766 0.761 0.759

6 1.677 1.676 1.642 1.640

0.3 1 0.025 0.024 0.024 0.024

2 0.136 0.137 0.135 0.135

3 0.149 0.149 0.147 0.147

4 0.530 0.525 0.524 0.519

5 0.566 0.561 0.558 0.554

6 1.303 1.299 1.274 1.269

0.4 1 0.019 0.018 0.018 0.018

2 0.113 0.113 0.111 0.110

3 0.117 0.119 0.116 0.118

4 0.397 0.386 0.391 0.383

5 0.425 0.420 0.417 0.411

6 1.013 1.010 0.989 0.985
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Table 3

Natural frequencies for clamped–clamped arch with monosymmetric section x3-axis (rad/s)

Shape Parabolic Elliptic

h=l Mode Present study ABAQUS Present study ABAQUS

0.2 In-plane 1 1.914 1.910 1.901 1.896

2 3.802 3.781 3.687 3.667

Out-of-plane 1 0.450 0.450 0.447 0.447

2 1.397 1.384 1.387 1.374

3 2.745 2.721 2.767 2.741

4 4.062 4.045 4.150 4.128

0.3 In-plane 1 1.481 1.483 1.464 1.464

2 3.178 3.168 3.115 3.104

Out-of-plane 1 0.335 0.335 0.330 0.331

2 1.044 1.033 1.031 1.020

3 2.244 2.217 2.246 2.216

4 3.477 3.452 3.558 3.528

0.4 In-plane 1 1.129 1.137 1.112 1.119

2 2.551 2.549 2.518 2.517

Out-of-plane 1 0.254 0.255 0.250 0.251

2 0.775 0.768 0.763 0.756

3 1.736 1.717 1.726 1.705

4 2.787 2.765 2.839 2.813

Table 4

Natural frequencies for clamped–free arch with monosymmetric section x3-axis (rad/s)

Shape Parabolic Elliptic

h=l Mode Present study ABAQUS Present study ABAQUS

0.2 In-plane 1 0.125 0.125 0.124 0.125

2 0.605 0.604 0.605 0.604

Out-of-plane 1 0.036 0.036 0.036 0.036

2 0.271 0.269 0.266 0.264

3 1.083 1.070 1.055 1.042

4 2.513 2.483 2.478 2.447

0.3 In-plane 1 0.109 0.110 0.108 0.109

2 0.439 0.436 0.438 0.435

Out-of-plane 1 0.025 0.025 0.025 0.024

2 0.192 0.191 0.187 0.186

3 0.774 0.763 0.751 0.741

4 1.520 1.521 1.503 1.503

0.4 In-plane 1 0.093 0.095 0.093 0.095

2 0.326 0.318 0.324 0.317

Out-of-plane 1 0.019 0.019 0.019 0.018

2 0.145 0.144 0.140 0.139

3 0.571 0.563 0.552 0.545

4 1.517 1.494 1.480 1.456
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condition, respectively. In the whole range of arch rise to span ratio, it is shown that the present solutions

are in excellent agreement with results by shell elements.

Figs. 8–11 show the normalized frequency variation against the arch rise to span length ratio for

monosymmetric arches. In these figures, normalized frequencies are given for the x=x0 where x0 is the
natural frequency in the limiting case of a straight beam with the same length.

From the results we can find that the normalized frequencies give little difference between parabolic and

elliptic arches but the variation tendency and orders of normalized frequencies show different character-

istics for two type of boundary conditions. For instance, for the clamped–free boundary condition, all

normalized frequencies corresponding to coupled and decoupled vibrational modes decrease as the arch rise

to span length ratio becomes large (see Figs. 8 and 10). On the other hand, for the clamped–clamped

condition, the third coupled and the first in-plane frequencies increase sharply in low h=l and then decrease

as the h=l becomes large (see Figs. 9 and 11). Also as the h=l increases, the second coupled and the first in-
plane frequencies decrease more slowly than the first and the third frequencies in the coupled modes and the

out-of-plane modes in case of the clamped–free arch (see Figs. 8 and 10).

4.3. Spatial buckling analysis of cantilever curved beams

Fig. 12 shows a thin-walled cantilever curved beam under a horizontal load P whose cross-section is the

same as the previous example. F.E. solutions using the nine noded shell element of ABAQUS are presented

for comparison. The curved beam in Fig. 12 is modeled using 20 curved beam elements, and 160 and 200
shell elements for curved beams monosymmetric with respect to x2- and x3-axis, respectively. Similarly to

vibrational modes of monosymmetric arches, buckling modes of arches having cross-sections monosym-

metric with respect to x2-axis are spatially coupled but those of arches monosymmetric with respect to

x3-axis are decoupled so that in-plane and out-of-plane modes are separated.

Fig. 8. Effect of rise to span length ratio for clamped–free arch with monosymmetric section x2-axis.
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Lateral–torsional buckling analysis is performed for the loading conditions applied at the free end of the
cantilever curved beam. To show effects of the second-order terms of semitangential rotations on buckling

load, we consider two cases where CASE1 and CASE2 mean the results by the potential energy PG in-

Fig. 9. Effect of rise to span length ratio for clamped–clamped arch with monosymmetric section x2-axis.

Fig. 10. Effect of rise to span length ratio for clamped–free arch with monosymmetric section x3-axis.
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cluding the second-order term and by the potential energy PG1 considering only the first-order term, res-

pectively. Tables 5 and 6 show fundamental buckling loads based on CASE1 and CASE2. From Tables, it

can be seen that buckling loads by CASE1 coincide closely with the solutions by ABAQUS but CASE2

gives the erroneous results.

In addition, Fig. 13 shows the normalized fundamental lateral–torsional buckling loads against the arch

rise to span length ratio for monosymmetric arches. Here normalized buckling load is given for the F =F0
where F0 is the lateral–torsional buckling load in a straight beam with the same length. From Fig. 13, it can
be found that the normalized lateral–torsional buckling loads give little difference between parabolic and

elliptic arches and buckling loads corresponding to coupled and decoupled modes decrease as the arch rise

to span length ratio becomes large.

Fig. 11. Effect of rise to span length ratio for clamped–clamped arch with monosymmetric section x3-axis.

Fig. 12. A cantilever arch and the loading condition for buckling analysis.
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5. Concluding remarks

For spatial free vibration and stability analysis of non-symmetric thin-walled curved beams with variable

curvatures, the total potential energy of curved beams vibrating harmonically was consistently derived by

including the second-order terms of semitangential rotations based on Vlasov�s assumption and applying

Table 5

Lateral buckling loads for the cantilever curved beam with monosymmetric section x2-axis

Shape Parabolic Elliptic

h=l Present study ABAQUS Present study ABAQUS

CASE1 CASE2 CASE1 CASE2

0.2 2.774 3.334 2.712 2.676 3.180 2.607

0.3 1.710 2.043 1.652 1.640 1.939 1.581

0.4 1.190 1.411 1.142 1.140 1.338 1.092

Table 6

Lateral buckling loads for the cantilever curved beam with monosymmetric section x3-axis

Shape Parabolic Elliptic

h=l Present study ABAQUS Present study ABAQUS

CASE1 CASE2 CASE1 CASE2

0.2 4.480 5.621 4.396 4.268 5.281 4.206

0.3 2.602 3.211 2.533 2.466 3.004 2.413

0.4 1.755 2.134 1.701 1.662 1.997 1.619

Fig. 13. Normalized lateral–torsional buckling loads for the cantilever curved beam with monosymmetric sections x2- and x3-axes,
respectively.
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the principle of linearized virtual work. All displacement parameters of deformation are defined at the

centroid axis. The curved beam element having eight degrees of freedom per node was developed in order to

investigate the spatial vibrational and buckling behaviour of thin-walled curved beams subjected to general

loading and boundary conditions. Through numerical examples, it was shown that the present numerical
solutions are in excellent agreement with results by the nine noded shell elements of ABAQUS in the whole

range of parabolic and elliptic arch rise to span length ratio. In addition, not only the influences of the arch

rise to span length ratio were investigated on spatial vibrational and buckling behaviors of curved beams

with the parabolic and elliptic shapes but also it was demonstrated that neglect of second-order term of

spatial rotations on lateral–torsional buckling of curved beams may lead to erroneous results.
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