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Abstract

An improved formulation for free vibration and spatial stability of non-symmetric thin-walled curved beams is
presented based on the displacement field considering variable curvature effects and the second-order terms of finite-
semitangential rotations. By introducing Vlasov’s assumptions and integrating over the non-symmetric cross-section,
the total potential energy is consistently derived from the principle of virtual work for a continuum. In this formulation,
all displacement parameters and the warping function are defined at the centroid axis and also thickness-curvature
effects and Wagner effect are accurately taken into account. For F.E. analysis, a thin-walled curved beam element is
developed using the third-order Hermitian polynomials. In order to illustrate the accuracy and the practical usefulness
of the present method, numerical solutions by this study are presented with the results analyzed by ABAQUS’ shell
elements. Particularly, the effect of arch rise to span length ratio is investigated on vibrational and buckling behaviour
of non-symmetric curved beams.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Curved bridges, arches and thin-walled structural members having variable curvatures show very com-
plex structural behaviour since twisting moments are always occurring in addition to bending moments due
to curvature effects. Therefore the accurate prediction of the natural frequencies and the stability limit
corresponding to a given strength for the curved beam elements with variable curvatures is of fundamental
importance in the design of these structures.

Until now, considerable researches on the in-plane free vibration of curved beams with variable cur-
vatures have been performed. Tseng et al. (2000, 1997) and Huang et al. (1998b) studied the in-plane free
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vibration of arches with variable curvatures using the dynamic stiffness method based on Timoshenko beam
theory. Oh et al. (2000, 1999) derived the governing equations of the in-plane free vibrations of non-circular
arches. Tarnopolskaya et al. (1996) has reported the phenomenon of transformation of mode shapes with
change in curvatures using the asymptotic analysis. And Gutierrez et al. (1989), Wang and Moore (1973),
Wang (1972), Romanelli and Laura (1972) calculated the natural frequencies of non-circular arches. On the
other hand, Huang et al. (2000, 1998a) investigated the out-of-plane free vibration behaviour and the linear
dynamic response of non-circular curved beams using the Laplace transform and dynamic stiffness method.
However most of these researches are confined to in-plane or out-of-plane vibration of non-circular curved
beams with only symmetric cross-sections.

In case of spatial stability analysis of thin-walled circular curved beams, Timoshenko and Gere (1961)
derived the governing equations for buckling of curved beams neglecting the effect of warping. Vlasov
(1961) formulated the stability equations by substituting the curvature terms of the curved beam into the
straight beam equilibrium equation. Usuki et al. (1979) developed a lateral-torsional buckling theory and
finite element formulation of thin-walled circular arch accounting for prebuckling deflections. Also,
Papangelis and Trahair (1987a,b) obtained analytical solutions for the lateral buckling of arch and com-
pared them with experiment results. Yang and Kuo (1987) and Kuo and Yang (1991) presented a stability
theory of symmetric thin-walled curved beam considering curvature effects and also, developed a straight
beam element for buckling analysis of curved beams. Saleeb et al. (1992) developed a finite element model
for the buckling analysis of shear flexible thin-walled frames using a mixed formulation. Kang and Yoo
(1994a,b) derived analytical solutions for the stability behavior of simply supported thin-walled curved
beams having a doubly symmetric open section. Chang et al. (1996) presented numerical solutions on
spatial stability of the circular arch using the thin-walled straight beam element. Recently Kim et al.
(2000a,b) developed a general theory for spatial stability analysis of non-symmetric thin-walled circular
curved beams. However, though a great portion of the previous research has been conducted on the sta-
bility analysis of circular curved beams, to the authors’ knowledge, the stability analysis of the curved beam
with variable curvatures has rarely been studied.

In this paper, for spatially coupled free vibration and buckling of non-symmetric thin-walled curved
beams with variable curvatures, an improved energy formulation is consistently presented based on the
study of Kim et al. (2000a). Here the total potential energy of the non-circular curved beam is derived by
introducing the displacement field considering both Vlasov’s assumption and effects of variable curvatures
and degenerating total potential energies for the elastic continuum to those for the curved beam. And then a
thin-walled non-circular beam element for F.E. analysis is developed using the third-order Hermitian
polynomials. Finally in order to illustrate the accuracy and the validity of this element, numerical solutions
by this study are presented and compared with the results analyzed by ABAQUS’ shell element (1992). In
particular, the influences of the arch rise to span length ratio are investigated on spatial vibrational and
buckling behaviors of non-circular beams with the parabolic and elliptic shapes.

2. Principle of linearized virtual work

The global coordinate system (xj,x,,x3) of the thin-walled non-circular beam is shown in Fig. 1. The x;-
axis coincides with the centroidal axis which is curves in plane but x,, x3 are not necessarily principal inertia
axes. This curvilinear coordinate is orthogonal if the cross-section is prismatic. Additional assumptions
adopted in this study are

1. The thin-walled non-circular beam is linearly elastic and prismatic.
2. The cross-section is rigid with respect to in-plane deformation except for warping deformation.
3. The effects of shear deformations are negligible.
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Fig. 1. Curvilinear coordinate system of a non-symmetric thin-walled curved beam.

For free vibration and buckling analysis of the general continuum, the principle of linearized virtual
work is expressed as follows:

/(‘c,-jéeii + O150m;; + Ori,»éefj)dV — o’ / pU;0U;dV = / T;0U;dS (1)
V Vv S

where %1;;, 7;; and e;; are the initial, the incremental stress and the linear strain, respectively; n; and e;; are
the non-linear strain due to U; and the linear strain due to U}, respectively; p is the density; w is the circular
frequency; T; is the surface force; U; and U, are linear and non-linear displacement components, respec-
tively; ¢ denotes ‘virtual’.

2.1. The displacement field for non-symmetric thin-walled cross-sections

Fig. 2 shows displacement parameters defined at the centroid along the x,-axis of the non-symmetric thin-
walled non-circular beam. e,, e; are the position vector components of the shear center in the local
coordinate. U,, U,, U, and w;, w,, w; are rigid body translations and rotations of the cross-section about
X1-, xp- and x;-axis, respectively. f is a warping parameter denoting the gradient of the twisting angle
0(= w;) with respect to x;-axis.
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Fig. 2. Notation for displacement parameters.
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From Frenet’s formula (Love, 1934), rotational parameters w,, w;, f and an axial parameter g with
respect to rigid body translations and twisting angle can be obtained by

wy = —U! + kU,

»=0 (2a-d)
! a-

f=-0—-xU,

g=Ui+xU

where differentiation with respect to x; is denoted by a prime and x(x;) denotes the curvature of non-
circular beams along the x;-axis.

With the assumption that the cross-section is rigid with respect to cross-sectional in-plane deformation,
the total displacement field including both the first and the second-order terms of rotational parameters can
be expressed as follows (Kim et al., 2000a):

1
U=U,+ (s+zsz>xo (3)
where
U= U +U, U+ U, U+ U)' (4a)
U= (U:+ f$,U,, U.)" (4b)
XO = (07x27x3)T (4C)
and
0 — 3 (000
S = w3 0 —1 (5)
—» (6] 0

where rotational components w;, w,, w3 should be interpreted to be semitangential rotations (Argyris and
Symeonidis, 1981; Kim and Kim, 2000).

Substituting Egs. (2), (4), and (5) into Eq. (3) and arranging in the component form, the displacement
vector components of an arbitrary point on the thin-walled cross-section can be expressed as follows:

z

Ui = U, = xU; = x3(U] = xUy) — (0" + kU, p(x2,x3)

U, =U, —x30 (6a—c)
Us = U, + x,0

and
Uj =5[-0(U, — kUp)x; + 0U,x3]
Us = 3~(0* + U)xy — (U — kU,)Ulxs] (7Ta—c)
U = 3=(U = kU)Upxs = {0” + (U, = kU }x

where U;, U are displacement components corresponding to the first- and second-order terms of dis-
placement parameters, respectively, while ¢ denotes the normalized warping function defined at the
centroid. The kinematic relationship between ¢ and ¢, defined at the shear center is given by

= ¢, +ex; — esxs (8)
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Section properties used in this study are defined as follows:

]zz/xgdA, [3:/)65(114, [23:/XZX3dA,
A

y y
Iy= [ ¢°d4, I¢2:/¢X3dA, 1¢3=/¢X2d147
A A A
Ly = /xidA, I3 Z/XZX§M, by = /x§x3dA, )
A A A
13332/)6;(1147 ]¢22:/q’>x§dA, 1¢33:/¢x§dA,
A A A

I3 :/¢X3x2dA, I¢¢2:/¢2x3dA, Lyg3 :/¢2X2d14
A A A

where 4, I, I, I3 and I, are the cross-sectional area, the second moment of inertia about x,- and x3-axes,
product moment of inertia and the warping moment of inertia, respectively. Ly (= Le,) and L, (= —Le3)
are product moments of inertia due to the normalized warping. 7;4(i, j,k = ¢,2,3) are the third moments of
inertia. The transformation equations between section properties defined at the centroid—centroid axis and
those at the centroid-shear center axis may be referred to Kim and Kim (2000).

On the other hand, stress resultants are defined as

F1=/T11dA7 Fz:/mdA7 F3=/TlsdA
y 4 y

M1 = /(’L’]3X2 — ’L'12)C3)dA, M2 :/‘C]])C3dA, M3 = 7/‘51])(2(114 (IOa—h)
A

A A
M¢=/‘E11(]5d14, Mp:/‘c“(x%—&—xg)d/l
A A

where Fy, F> and F; are an axial force and shear forces, respectively; M, and M; are bending moments with
respect to x,- and x;-axes, respectively; M, and M, are the total twisting moment and the bimoment with
respect to the x;-axis, respectively; M, is a stress resultant known as the Wagner effect.

2.2. Strain—displacement and force—deformation relations

According to the assumption of rigid deformation with respect to the in-plane, the in-plane strains
(ex, €33, e23) are negligible. For the thin-walled curved beam, a complete set of linear strain—displacement
relations due to the first-order displacement parameters are expressed as follows:

T

1+Kx3
= 04 K.~ U ) (02— KU — 0 U] (11a)
/ /
2ey = Uy, (l n KX3> + Uip = —x3(0' + xUj) Tt o (0" +xU)g, (11b)
2ei3 = (Usy — kUy) ! + Uz = (x3 +x¢) (0 +xU’) L (0 +xU)p (11c)
13 31 N T 13 2 (O s
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where the subscript ‘comma’ indicates partial differentiation with respect to the curvilinear coordinate
(x1,x2,x3). It should be noticed that Egs. (11b) and (11c) represent only shear strains due to Saint-Venant
torsion because ¢ + kU’ means the derivative of a twisting angle considering the curvature effect. Con-
sequently, it means that shear deformations due to shear forces and the restrained torsion vanish.

Substituting Eq. (11a) into Egs. (10a), (e)—(g) and integrating over the cross-section yield the following
force—deformation relations.

F A —xL, Kby —KI(TQ Ul + kU,
~ -~ - — . !
Ml _g|—®2 L s p (_5§,+ Kg““) (12)
M; kly D3 L —1y3 y K ,
My —klp A~y Iy —(0 4w

where 4 = A + K2,. An approximation is used to account for the thickness-curvature effect as follows:

1
1+KX3

~ 1 — xx; + K°x3 (13)

On the other hand, non-linear strain—displacement relations due to first-order displacement parameters
and linear relations due to the second-order rotation parameters are expressed in Egs. (14) and (15), res-
pectively.

1 1 2

i =3 (U1 +KUs)* + U3y + (Usy — kU )) (1 + mc3> "
1

Ny = 2 WUy + kUs) 4+ Usy - Uy + Us(Us ) — kU 1+ xx3 e
1

M = 5[U13(U11 + kUs) + Uas - Usy + Uss(Usy = U] o= "

and
el = (Ur, + KUDTW -
2 = Ui T U -
* * * 1 ¥
2613 — (U3,1 — KZUI )Tm"‘ U173 (150)

2.3. Total potential energy of thin-walled curved beams with variable curvatures

Total potential energy IT of thin-walled curved beams with variable curvatures consists of the elastic
strain energy Iz, the potential energy Il(= Il + I15,) due to initial stresses and the kinetic energy T as
follows:

H:HE+H61+H(;2—T (163)
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where
1 1
Iy = 3 / /[Tn@n + 2tipeny + 2t13e13] (1 + xx3) d4 dxy (16b)
0 Ja
!
Hor = / /[OTIIW11 + 21005, + 2"113m5) (1 4 Kx3) dd dx, (16c)
0 Ja
!
I = / /[OT“@T] + 201126T2 + 20‘613673](1 + KX3)dAdX1 (16d)
0 Ja
1 1
T:Epwz//[U12+U22+U32}(1+Kx3)dAdx1 (16e)
0 Ja

where /, £ and G are the length of curved beams, Young’s modulus and shear modulus, respectively.
Substituting Eq. (11) into Eq. (16b) and integrating over the cross-sectional area yields:

1 L
Iy =~ / [Fi (U] + kUz) + My (= U + kU,)" + M3(U; — k0) — My (0 + xU;)'
0

2
+ (M) — Mg)(0' + xU;) dxy (17a)
where
My = /A{(mq;2 1 3)(1 + Kxa) — Tiaweb} dA. (17b)
Now substituting the force—deformation relations (12) into the elastic strain energy (17a) leads to
I = % /OL [E(A + K L) (U, + kU.)* + EL (U] — k0)* + EL{U! — (xU,)'}’

+ 2EL(U, + kU{U! — (kU,)'} + 2EIi (U! — k0)(0" + ' U, + xU!) + ELy (0" + U, + xU!')’
+GJ(0 + kU,)* + 2EDs (U] — k0){U! — (kUy)'} + 2EDLs k(U — k0)(U, + kU)

+ 2L (0 + KU, + kUU! — (kU)'} + 2EIp (0" + K U, + kU (UL + KUZ)] dx, (18)

Then simplifying the underlined terms in Eq. (18), II; may be obtained as follows:

1 [t ~ . _
1y =5 / [EA(U; +«kU.)’ + EL (U] — k0)* + EL(U! + *U; — K'U,)* + EI; (0" + U, + kU))?
| ) )

+ 2B (U} — k0)(0" + K'U, + kU!) + GJ (0 + kU.)* + 2EDs (U — k0)(U! + K*U; — ' Uy)
+ 2T (0" + KU + kU (UL + 12U, = U, | d (19a)
where
L=5L—khy, ©L=I—khy, by=Iy— kKl
Iy =1y = Klyga, Igp =lgo = Kly, g3 = I3 = Klyos
and J is the torsional constant, and the following relation is used:
My — Mg = My — My, = GJ(0 + xU)) (20)
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Next, substituting the strain—displacement relations into Egs. (16¢) and (16d), noting the definition of
Eq. (10), and considering the thickness-curvature effect of Eq. (13), I15, and Il 5, are expressed, respectively,
as follows:

1 L
HGI*E/(;

— 2°M3(U. — kU,) (0 + kU;) 4+ 2°BO(U. — kU,) — 2°F;U}0

F{U? + (U, — kU’ } + "Mof{ — 2U0' — kU2 + k(U. — kU,)*}

+ 2/ 2y dA{UL(U! — kU, + kO(U! — kU)} + 2/0113x2dA(UZ’ — kU(U! — x0)
A A
2 / 0,0 dA{U/ (U — 0) + 0(0 + KU')}+2 / e dA{(U! — kU (U — KUY + 00’}
A

0
A

+ M, (0 + kU, + 26°My (U] — kU (0 + xU)) | dxy (21)

1 L
HG2:§/0

— OFzg(ljz/ — KUx) + OFS(HU)/))— / 0T12X2dA(92 + (]}/,2>I — / 0‘512X3 dA{{U)/)(UZ/ — KUY)},

A4 A

"M{O(U, — KUY + kUL(U, — KU} +“Mo{(0U) — k0 — k(UL — kU,)*}

+k0(U! — kUy)} — / 113, dA{{ U} (U] — xU,)} + 10U, — kUy)}
4

— / 0‘[13)63 dA{02 + (UZ, — KUx)z}/ dx1 (22)
A

where it should be noted that underlined terms existing in Egs. (21) and (22) cancel out naturally and energy
terms due to the total torque M, are obtained without introduction of awkward assumptions (see Eq. (25)).
Also, the inextensibility condition (23) is utilized.

U + kU, ~0 (23)

Consequently, summing up Egs. (21) and (22), the final expression for the potential energy functional I1;
is represented as follows:

1 L / / !
e =5 / CR{UR + (UL = KU} + "My (0f + kUL — "R(UL0) + "My { (U] — k0)0 — U/(0' + KU}
0
+ 2 My (U] — kU )(0 + kUy) + "Ms{ (U] = kU,)'0 — (U] = kU)(0' + xU))} + "RO(U. — kUy)
+ 'M{(U] = kU (U} — k0) — Uy(U! = kUy)'} dx, (24)

Here to investigate effects of the second-order terms of finite semitangential rotations, we assume that the
underlined terms may be neglected in Eq. (21) and Eq. (25) is valid for the torsional moment (see Argyris
et al., 1979; Kim et al., 2001).

0.50M1 :/O’C13deA = —/0T12X3dA (25)
A A

Then the potential energy Ils including only the first-order term of finite rotations may be written as
follows:
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1 ‘ /. ! ! /.
Ilg = 3 /0 "R{U? + (U - kU.)*} + "My(-2U)0" — kU?) = 2°M5(U. — kU, (0 + kU})

+ 2°RO(U. — kU,) = 2°FUL0 + "M, (0 + xU,)* + "M {(U] — xUy) (U] — 2x0)
- U(U! - kU,)'} + 26°My (U — kU, (0 + kU;) dx, (26)
For the spatial stability analysis of non-symmetric curved beams subjected to general loadings, the stress

resultant M, denoting Wagner effect should be expressed with respect to stress resultants Fy, M>, Mz, My as
follows:

M, = BiFy + ByMa + B3Ms + B,My (27)

Now to evaluate coefficients f3, B,, fis, B, substituting Eq. (11a) into Eq. (10h) and integrating over the
cross-section leads to

U + kU,
(—U +xUy)

M, = E<1A2 + I3, Iy + Iyzz, — I3 — L33, 1yon + I433) U" — 10 (28)
)
—(0' + kU,

Then substituting force-deformation relations (12) into Eq. (27) and comparing the result with Eq. (28),
four coefficients are determined as follows:

A kL« —Klp| (P L+
*ﬁz 13\ *123 1¢/2\ By | _ | hs+ln (29)
klhy —DLy L —1Iy3 Bs —I333 — I3
—KL/;Z 1/4,; —I;; Iy By L3y + g

Finally in order to obtain the kinetic energy 7 relevant to the non-symmetric cross-section, substituting the
displacement components Eq. (6) into Eq. (16e) and integrating it over the cross-section yields

1 L S -~ ~ —
T = Epa)z /0 [A(Uj + U2+ U2) + L0 + LU? + L(U, — kU,)* + I, (0' + xU.)* + 2 U0 + xU))
+ 2 (UL — kU (0 + kU.) = 2kl Uy (0 + kU)) — 2k1(U,0) — 2kbU(U, — kUy)
+ 2khs Ul (U! = KU,) + 25y(ULU! — 2xU U + KUZQ)} dx, (30a)
where

L =h+xhy, L =Ih+khy, ITp =1y + Klyg2, L72 = Iy + Kl

2 N (30b)
Iz =Igs+xlys, Lhy=hL+15, Iy =1+ Kk(hy+ bhss)

3. The thin-walled non-circular beam element

For F.E. analysis of non-circular beams, a thin-walled curved beam element with the non-symmetric
cross-section is developed in this section. Fig. 3 shows the nodal displacement vector of a thin-walled
curved beam element including restrained warping effects. In order to accurately express the deformation of
element, it is necessary to use pertinent shape functions.
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Fig. 3. Nodal displacement vector of a thin-walled curved beam element.

In this study, cubic Hermitian polynomials are adopted to interpolate displacement parameters that are
defined at the centroid axis. Thus this curved element has two nodes and eight nodal degrees of freedom per
node. As a result, the element displacement parameters Uy, U,, U., 0 can be interpolated with respect to the
nodal displacements as follows:

szhl~u"+h2-gp+h3-uq+h4~gq (313)

Uy=hy 0"+ hy- o + hy - 0! + hy - 0 (31b)

Uzzhl-w”—hz-w‘;+h3-wq—h4-a)’2’ (310)

0:h1'w[17—h2'fp+h3'w{{—h4'fq (31(1)
where

w’ =Uy(0), o*=1U,(0), w’=U.(0) (32a—)

fp = _0/(0)7 gp = U;(O) (32g7 h)

and A; denotes cubic Hermitian polynomials.

Substituting the shape functions, material and cross-sectional properties and distribution of internal
forces into Egs. (19), (24) and (30) and integrating along the element length, the equilibrium equation of
thin-walled curved beam element are obtained in matrix form as following:

(Ke + K)U. — 0’M, U, = F, (33)
and

U, = (Wl 0" wP, ol o, o, 17, g7 ul  v? wi, of, ol o, 17, g9) (34a)

Fo = (F, By B, MY, M3, MS, Mg, FL B FS S B MY, M, M, MG, D (34b)

where K., K, and M, denote 16 x 16 element elastic and geometric stiffness and mass matrices, respectively,
which are evaluated using Gauss five-point numerical integration scheme. U, and F, are nodal displacement
and force vectors, respectively. Here it is convenient to introduce rotational and axial nodal displacement
components considering curvature effect as follows:

b = —U'(0) + kU,(0) = ot + K" (35a)
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77 = —0(0) = <UL(0) = 17 — (35b)

g = UL(0) + kU.(0) = g” + kw” (35¢)

In order to evaluate the element matrices corresponding to the newly defined nodal displacement com-
ponents, the transformation equation between the nodal displacement vector U, and the new displacement
vector U, considering the effect of curvature may be obtained from Eq. (35) as follows:

Um:Tlﬁ;a a=p,q (36)
where

o ) T oW oof @ of TR

(37a,b)
and
10 -
1.0
10 -
S I
T\= | _, L 1.0 (38)
1.0
: x 1.0
“x i . . 1.0
Now using Eq. (38), Eq. (33) is transformed to
(K. + K)U. — o’ M, U, = F, (39)
where
f]\e = <up’ Upv Wp» w[fv @7 w{’:,ﬁa g/'}a uqv Uq7 an w(fa (/0\37 wgaﬁ7 §q> (408.)
1/:\'3 = <F{77F§7FV3P’MIP7]/M\§7M§7@7ﬁﬂﬂquzqu;q7M{]7A/l\2q7Mg7j/M\g7ﬁ> (40b)
and matrices and vectors in Eq. (39) are evaluated as follows:
K, =T'K.T, U,=T0U, F=T'F, (41a)
where
T, '
T = | i (41b)
- T

Lastly using direct stiffness method, the matrix equilibrium equation for the free vibration and elastic
spatial buckling analysis of non-symmetric thin-walled curved beam with variable curvature is obtained as

[Kg + /Ks|U — *MU = F (42)
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where M, Kg and K¢ are global mass, global elastic and geometric stiffness matrices, respectively; F denotes
the global nodal force vector and becomes zero vector for free vibration and stability analysis and 4 denotes
the load parameter under the assumption of proportional loading; and K¢ is calculated for a predefined
initial stress distribution corresponding to the prebuckling loading state.

4. Numerical examples

The total potential energy has been derived and F.E. procedures have been developed for spatial free
vibration and stability analysis of non-symmetric thin-walled curved beams with variable curvatures. In this
section, spatial free vibration and stability analysis for curved beams of the parabolic and elliptic geo-
metries with clamped-clamped and clamped—free end constraints are performed according to the variation
of arch rise to span length ratio.

4.1. Convergence study

Figs. 4 and 5 show the geometric configuration of parabolic and elliptic arches having the same span
length / and rise 4 and their channel cross-sections monosymmetric with respect to x,- and x;-axis, res-
pectively. To examine the convergence property of the thin-walled curved beams with variable curvatures
developed by this study, spatial free vibration and stability analysis for curved beams of the parabolic with
clamped-free end constraints are performed. The cross-section of curved beam is monosymmetric with
respect to xs-axis and the arch rise to span length ratio (//) is 0.4.

The in-plane and out-of-plane natural frequencies and the lateral buckling load normalized with respect
to the F.E. solution using 30 curved beam elements are presented in Figs. 6 and 7 as the element number
increases. From Fig. 6, it can be found that the convergence speed of natural frequencies for out-of-plane
modes is higher than that for in-plane modes. Also, Figs. 6 and 7 show that the convergence speed is fast
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clamped free
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z
L1 l
..... o = h
.............. clamped/ W—T
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) >
el l el l
| l
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Fig. 4. Shapes and boundary conditions of arches for vibration analysis.
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Fig. 5. Monosymmetric cross-sections.

and results by 20 curved beam elements give accurate solutions. Accordingly, in subsequent examples on
the free vibration and buckling problems of non-circular curved beam, an entire beam is modeled using 20
curved beam elements.

4.2. Free vibration of thin-walled curved beams

The clamped-clamped and clamped—free end constraints are considered (see Fig. 4). The influence of
rise to span length ratio of arch is investigated for two types of arches. In this example, 20 curved beam
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Fig. 7. Convergence of normalized buckling load.

elements and 320 and 400 shell elements are used for analysis of arches monosymmetric with respect to x,-
and x;3-axis, respectively.

Tables 1 and 2 show natural frequencies of parabolic and elliptic arches monosymmetric with respect to
x,-axis that have spatially coupled mode shapes. On the other hand, mode shapes of arches monosymmetric
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Table 1
Natural frequencies for clamped-clamped arch with monosymmetric section x,-axis (rad/s)
Shape Parabolic Elliptic
h/l Mode Present study ABAQUS Present study ABAQUS
0.2 1 0.310 0.312 0.310 0.312
2 0.883 0.886 0.879 0.883
3 1.828 1.834 1.817 1.823
4 2.275 2.254 2.262 2.241
5 3.121 3.130 3.102 3.110
6 4.111 4.060 4.039 3.986
0.3 1 0.237 0.239 0.236 0.238
2 0.668 0.669 0.663 0.664
3 1.419 1.421 1.406 1.408
4 1.792 1.781 1.774 1.761
5 2.469 2473 2.449 2452
6 3.572 3.532 3.538 3.496
0.4 1 0.183 0.184 0.182 0.183
2 0.509 0.509 0.503 0.503
3 1.098 1.099 1.085 1.086
4 1.378 1.379 1.359 1.359
5 1.930 1.933 1.913 1.915
6 2.896 2.878 2.886 2.868
Table 2
Natural frequencies for clamped—free arch with monosymmetric section x,-axis (rad/s)
Shape Parabolic Elliptic
h/l Mode Present study ABAQUS Present study ABAQUS
0.2 1 0.035 0.034 0.035 0.034
2 0.156 0.156 0.155 0.155
3 0.203 0.203 0.203 0.202
4 0.727 0.723 0.718 0.715
5 0.768 0.766 0.761 0.759
6 1.677 1.676 1.642 1.640
0.3 1 0.025 0.024 0.024 0.024
2 0.136 0.137 0.135 0.135
3 0.149 0.149 0.147 0.147
4 0.530 0.525 0.524 0.519
5 0.566 0.561 0.558 0.554
6 1.303 1.299 1.274 1.269
0.4 1 0.019 0.018 0.018 0.018
2 0.113 0.113 0.111 0.110
3 0.117 0.119 0.116 0.118
4 0.397 0.386 0.391 0.383
5 0.425 0.420 0.417 0411
6 1.013 1.010 0.989 0.985

with respect to x3-axis are decoupled so that Tables 3 and 4 separately show frequencies corresponding
to the in-plane and out-of-plane vibration modes. Also in Tables 1-4, F.E. solutions by present study
are compared with those by ABAQUS’s shell elements for the clamped—clamped and clamped—free end
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Table 3
Natural frequencies for clamped-clamped arch with monosymmetric section x3-axis (rad/s)
Shape Parabolic Elliptic
h/l Mode Present study ABAQUS Present study ABAQUS
0.2 In-plane 1 1.914 1.910 1.901 1.896
2 3.802 3.781 3.687 3.667
Out-of-plane 1 0.450 0.450 0.447 0.447
2 1.397 1.384 1.387 1.374
3 2.745 2.721 2.767 2.741
4 4.062 4.045 4.150 4.128
0.3 In-plane 1 1.481 1.483 1.464 1.464
2 3.178 3.168 3.115 3.104
Out-of-plane 1 0.335 0.335 0.330 0.331
2 1.044 1.033 1.031 1.020
3 2.244 2217 2.246 2.216
4 3.477 3.452 3.558 3.528
0.4 In-plane 1 1.129 1.137 1.112 1.119
2 2.551 2.549 2.518 2.517
Out-of-plane 1 0.254 0.255 0.250 0.251
2 0.775 0.768 0.763 0.756
3 1.736 1.717 1.726 1.705
4 2.787 2.765 2.839 2.813
Table 4
Natural frequencies for clamped-free arch with monosymmetric section x;-axis (rad/s)
Shape Parabolic Elliptic
h/l Mode Present study ABAQUS Present study ABAQUS
0.2 In-plane 1 0.125 0.125 0.124 0.125
2 0.605 0.604 0.605 0.604
Out-of-plane 1 0.036 0.036 0.036 0.036
2 0.271 0.269 0.266 0.264
3 1.083 1.070 1.055 1.042
4 2.513 2.483 2.478 2.447
0.3 In-plane 1 0.109 0.110 0.108 0.109
2 0.439 0.436 0.438 0.435
Out-of-plane 1 0.025 0.025 0.025 0.024
2 0.192 0.191 0.187 0.186
3 0.774 0.763 0.751 0.741
4 1.520 1.521 1.503 1.503
0.4 In-plane 1 0.093 0.095 0.093 0.095
2 0.326 0.318 0.324 0.317
Out-of-plane 1 0.019 0.019 0.019 0.018
2 0.145 0.144 0.140 0.139
3 0.571 0.563 0.552 0.545
4 1.517 1.494 1.480 1.456
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condition, respectively. In the whole range of arch rise to span ratio, it is shown that the present solutions
are in excellent agreement with results by shell elements.

Figs. 811 show the normalized frequency variation against the arch rise to span length ratio for
monosymmetric arches. In these figures, normalized frequencies are given for the w/wy where w, is the
natural frequency in the limiting case of a straight beam with the same length.

From the results we can find that the normalized frequencies give little difference between parabolic and
elliptic arches but the variation tendency and orders of normalized frequencies show different character-
istics for two type of boundary conditions. For instance, for the clamped—free boundary condition, all
normalized frequencies corresponding to coupled and decoupled vibrational modes decrease as the arch rise
to span length ratio becomes large (see Figs. 8 and 10). On the other hand, for the clamped—-clamped
condition, the third coupled and the first in-plane frequencies increase sharply in low /// and then decrease
as the h/1 becomes large (see Figs. 9 and 11). Also as the /// increases, the second coupled and the first in-
plane frequencies decrease more slowly than the first and the third frequencies in the coupled modes and the
out-of-plane modes in case of the clamped—free arch (see Figs. 8 and 10).

4.3. Spatial buckling analysis of cantilever curved beams

Fig. 12 shows a thin-walled cantilever curved beam under a horizontal load P whose cross-section is the
same as the previous example. F.E. solutions using the nine noded shell element of ABAQUS are presented
for comparison. The curved beam in Fig. 12 is modeled using 20 curved beam elements, and 160 and 200
shell elements for curved beams monosymmetric with respect to x,- and x;-axis, respectively. Similarly to
vibrational modes of monosymmetric arches, buckling modes of arches having cross-sections monosym-
metric with respect to x,-axis are spatially coupled but those of arches monosymmetric with respect to
x3-axis are decoupled so that in-plane and out-of-plane modes are separated.
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Lateral-torsional buckling analysis is performed for the loading conditions applied at the free end of the
cantilever curved beam. To show effects of the second-order terms of semitangential rotations on buckling
load, we consider two cases where CASE1 and CASE2 mean the results by the potential energy Il in-
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Fig. 12. A cantilever arch and the loading condition for buckling analysis.

cluding the second-order term and by the potential energy Il;, considering only the first-order term, res-
pectively. Tables 5 and 6 show fundamental buckling loads based on CASEIl and CASE2. From Tables, it
can be seen that buckling loads by CASEI1 coincide closely with the solutions by ABAQUS but CASE2
gives the erroneous results.

In addition, Fig. 13 shows the normalized fundamental lateral-torsional buckling loads against the arch
rise to span length ratio for monosymmetric arches. Here normalized buckling load is given for the F/F;
where F is the lateral-torsional buckling load in a straight beam with the same length. From Fig. 13, it can
be found that the normalized lateral-torsional buckling loads give little difference between parabolic and
elliptic arches and buckling loads corresponding to coupled and decoupled modes decrease as the arch rise
to span length ratio becomes large.
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Table 5
Lateral buckling loads for the cantilever curved beam with monosymmetric section x,-axis
Shape Parabolic Elliptic
h/l Present study ABAQUS Present study ABAQUS
CASELl CASE2 CASELl CASE2
0.2 2.774 3.334 2.712 2.676 3.180 2.607
0.3 1.710 2.043 1.652 1.640 1.939 1.581
0.4 1.190 1.411 1.142 1.140 1.338 1.092
Table 6
Lateral buckling loads for the cantilever curved beam with monosymmetric section x3-axis
Shape Parabolic Elliptic
h/l Present study ABAQUS Present study ABAQUS
CASELl CASE2 CASELl CASE2
0.2 4.480 5.621 4.396 4.268 5.281 4.206
0.3 2.602 3.211 2.533 2.466 3.004 2.413
0.4 1.755 2.134 1.701 1.662 1.997 1.619
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Fig. 13. Normalized lateral-torsional buckling loads for the cantilever curved beam with monosymmetric sections x,- and x;-axes,
respectively.

5. Concluding remarks
For spatial free vibration and stability analysis of non-symmetric thin-walled curved beams with variable

curvatures, the total potential energy of curved beams vibrating harmonically was consistently derived by
including the second-order terms of semitangential rotations based on Vlasov’s assumption and applying
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the principle of linearized virtual work. All displacement parameters of deformation are defined at the
centroid axis. The curved beam element having eight degrees of freedom per node was developed in order to
investigate the spatial vibrational and buckling behaviour of thin-walled curved beams subjected to general
loading and boundary conditions. Through numerical examples, it was shown that the present numerical
solutions are in excellent agreement with results by the nine noded shell elements of ABAQUS in the whole
range of parabolic and elliptic arch rise to span length ratio. In addition, not only the influences of the arch
rise to span length ratio were investigated on spatial vibrational and buckling behaviors of curved beams
with the parabolic and elliptic shapes but also it was demonstrated that neglect of second-order term of
spatial rotations on lateral-torsional buckling of curved beams may lead to erroneous results.

Acknowledgement

The authors are grateful for the support provided by a grant (R01-2002-000-00265-0) from the Korea
Science and Engineering Foundation (KOSEF).

References

ABAQUS, 1992. User’s Manual, vols. I and II, Ver. 5.2. Hibbit, Karlsson & Sorensen, Inc.

Argyris, J.H., Symeonidis, Sp., 1981. Nonlinear finite element analysis of elastic systems under nonconservative loading-natural
formulation: Part I. Quasistatic problems. Computer Methods in Applied Mechanics and Engineering 26, 75-123.

Argyris, J.H., Hilpert, O., Malejannakis, G.A., Scharpf, D.W., 1979. On the geometrical stiffness of a beam in space—a consistent v.w.
approach. Computer Methods in Applied Mechanics and Engineering 20, 105-131.

Chang, S.P., Kim, M.Y., Kim, S.B., 1996. Stability of shear deformable thin-walled space frames and circular arches. Journal of
Engineering Mechanics (ASCE) 122 (9), 844-854.

Gutierrez, R.H., Laura, P.A., Rossi, R.E., Bertero, R., Villaggi, A., 1989. In-plane vibrations of non-circular arcs of non-uniform
cross-section. Journal of Sound and Vibration 129 (2), 181-200.

Huang, C.S., Tseng, Y.P., Chang, S.H., 1998a. Out-of-plane dynamic response of non-circular curved beams by numerical Laplace
transform. Journal of Sound and Vibration 215 (3), 407-424.

Huang, C.S., Tseng, Y.P., Leissa, A.W., Nich, K.Y., 1998b. An exact solution for in-plane vibrations of an arch having variable
curvature and cross section. International Journal of Mechanical Sciences 40 (11), 1159-1173.

Huang, C.S., Tseng, Y.P., Chang, S.H., Hung, C.L., 2000. Out-of-plane dynamic analysis of beams with arbitrarily varying curvature
and cross-section by dynamic stiffness matrix method. International Journal of Solids and Structures 37, 495-513.

Kang, Y.J., Yoo, C.H., 1994a. Thin-walled curved beams. I: Formulation of nonlinear equations. Journal of Engineering Mechanics
(ASCE) 120 (10), 2072-2101.

Kang, Y.J., Yoo, C.H., 1994b. Thin-walled curved beams. II: Analytical solution for buckling of arches. Journal of Engineering
Mechanics (ASCE) 120 (10), 2102-2125.

Kim, M.Y., Min, B.C., Suh, M.W., 2000a. Spatial stability of nonsymmetric thin-walled curved beams. I: Analytic approach. Journal
of Engineering Mechanics (ASCE) 126 (5), 497-505.

Kim, M.Y., Min, B.C., Suh, M.W., 2000b. Spatial stability of nonsymmetric thin-walled curved beams. II: Numerical approach.
Journal of Engineering Mechanics (ASCE) 126 (5), 506-514.

Kim, S.B., Kim, M.Y., 2000. Improved formulation for spatial stability and free vibration of thin-walled tapered beam and space
frames. Engineering Structures 22 (5), 446-458.

Kim, M.Y., Chang, S.P., Park, H.G., 2001. Spatial postbuckling analysis of nonsymmetric thin-walled frames. I: Theoretical
considerations based on semitangential property. Journal of Engineering Mechanics (ASCE) 127 (8), 769-778.

Kuo, S.R., Yang, Y.B., 1991. New theory on buckling of curved beams. Journal of Engineering Mechanics (ASCE) 117 (8), 1698-1717.

Love, A.E.H., 1934. A treatise on the mathematical theory of elasticity, fourth ed. University press, Cambridge.

Oh, S.J., Lee, B.K., Lee, .LW., 2000. Free vibration of non-circular arches with non-uniform cross-section. International Journal of
Solids and Structures 37, 4871-4891.

Oh, S.J., Lee, B.K., Lee, LW., 1999. Natural frequencies of non-circular arches with rotatory inertia and shear deformation. Journal of
Sound and Vibration 219 (1), 23-33.



3128 N.-I Kim et al. | International Journal of Solids and Structures 40 (2003) 3107-3128

Papangelis, T.P., Trahair, N.S., 1987a. Flexural-torsional buckling of arches. Journal of Structural Engineering (ASCE) 113 (4),
889-906.

Papangelis, T.P., Trahair, N.S., 1987b. Flexural-torsional buckling test on arches. Journal of Structural Engineering (ASCE) 113 (7),
1433-1443.

Romanelli, E., Laura, P.A.A., 1972. Fundamental frequencies of non-circular, elastic, hinged arcs. Journal of Sound and Vibration
24 (1), 17-22.

Saleeb, A.F., Chang, T.Y.P., Gendy, A.S., 1992. Effective modelling of spatial buckling of beam assemblages accounting for warping
constants and rotation-dependency of moments. International Journal for Numerical Methods in Engineering 33, 469-502.

Tarnopolskaya, T., de Hoog, F., Fletcher, N.H., Thwaites, S., 1996. Asymptotic analysis of the free in-plane vibrations of beams with
arbitrarily varying curvature and cross-section. Journal of Sound and Vibration 196 (5), 659-680.

Timoshenko, S.P., Gere, J.M., 1961. Theory of elastic stability, second ed. McGraw-Hill, New York.

Tseng, Y.P., Huang, C.S., Kao, M.S., 2000. In-plane vibration of laminated curved beams with variable curvature by dynamic stiffness
analysis. Composite Structures 50, 103-114.

Tseng, Y.P., Huang, C.S., Lin, C.J., 1997. Dynamic stiffness analysis for in-plane vibrations of arches with variable curvature. Journal
of Sound and Vibration 207 (1), 15-31.

Usuki, S., Kano, T., Watanabe, N., 1979. Analysis of thin walled curved members in account for large torsion. Proceedings of JSCE
(290), 1-15.

Vlasov, V.Z., 1961. Thin-walled elastic beams, second ed. National Science Foundation, Washington, DC.

Wang, T.M., 1972. Lowest natural frequency of clamped parabolic arcs. Journal of Structural Division 98 (ST1), 407-411.

Wang, T.M., Moore, J.A., 1973. Lowest natural extensional frequency of clamped elliptic arcs. Journal of Sound and Vibration 30 (1),
1-7.

Yang, Y.B., Kuo, S.R., 1987. Effect of curvature on stability of curved beams. Journal of Structural Engineering (ASCE) 113 (6),
1185-1202.



	Free vibration and spatial stability of non-symmetric thin-walled curved beams with variable curvatures
	Introduction
	Principle of linearized virtual work
	The displacement field for non-symmetric thin-walled cross-sections
	Strain-displacement and force-deformation relations
	Total potential energy of thin-walled curved beams with variable curvatures

	The thin-walled non-circular beam element
	Numerical examples
	Convergence study
	Free vibration of thin-walled curved beams
	Spatial buckling analysis of cantilever curved beams

	Concluding remarks
	Acknowledgements
	References


